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Monte Carlo Studies of a Driven Lattice Gas. 
I. Growth and Asymmetry During Phase Segregation 
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We investigate the effects of an external field on the kinetics of phase segrega- 
tion in systems with conservative diffusive dynamics. We find that, in contrast 
to the situation without a field, there are now qualitative differences between the 
results of microscopic simulations of a 2D lattice model with biased Kawasaki 
exchanges and those obtained from various modifications of the macroscopic 
Cahn-Hilliard equation (mCH). While both microscopic simulations and 
numerical solutions of MCH yield triangular domains, we find that in the 
former the triangles mainly point opposite to the field, while in the latter and in 
new calculations with the mCH they point along the field. On the other hand, 
the rate of growth of the clusters and their final state, bands parallel to the field, 
are similar. This issue and the question of the mesoscopic behavior of cell 
dynamical systems is discussed but not resolved. 

KEY WORDS: Driven diffusive systems; phase segregation dynamics. 

1. I N T R O D U C T I O N  

The  s tudy  of  phase  segrega t ion  occur r ing  w h e n  a b ina ry  mix tu re  is 

quenched  be low its cr i t ical  t e m p e r a t u r e  Tc has  a r ich exper imenta l ,  
theoret ical ,  and  c o m p u t a t i o n a l  history.  ~2~ There  is by n o w  a genera l  con-  

sensus tha t  in the late s tage o f  the  segrega t ion  there  exists a scal ing regime 
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where the system is effectively made up of pure phase regions separated by 
very narrow interfaces. The system can then be characterized by only one 
length scale R(t), the characteristic length of the phase domains at time t. 
Thus typical statistical functions of both space and time are expected to 
depend only on r/R(t) apart from possible overall amplitudes. Such 
dynamical scaling is indeed observed in the two-point correlation function 
G(r, t), i.e., G(r, t) oc ~(r/R(t)), and in the closely related structure factor, 
S(k, t) ocflk/k, ,( t))  with k,,  the value o f k  where S is maximum at time t 
(see, e.g., ref. 3 for experimental data). For late-stage segregation, it is 
generally accepted that this length scales according to R ( t ) ~ t  ~~ where 
~0 = 1/3 when the order parameter is conserved and the dynamics is dif- 
fusive J-'" 4~ A natural question to ask is how this behavior would change if 
a constant external field (e.g., electric or gravitational) is present during the 
phase segregation. 

We could arrive at the same question starting from another perspective, 
namely, phase transitions in driven diffusive systems (DDS)J 5~ A prototype 
consists of the usual Ising lattice gas, with the particles subjected to an 
external driving field so that their motion is biased along one of the axes 
of the lattice. There has been much interest in the steady states of such 
systems (see ref. 6 for a review). The second-order Ising transition present 
in the equilibrium system without a field still exists in the stationary non- 
equilibrium state with a critical temperature Tc which depends on the field 
strength. Phase segregation will occur when the system is quenched below 
this temperature, and we thus we have a different motivation for pursuing 
the same study, i.e., phase segregation dynamics for systems on their way 
to a nonequilibrium, rather than an equilibrium, steady state. 

Theoretical investigations most frequently follow two distinct avenues: 
computer simulations of a microscopic model and numerical integration of 
an equation for the continuum macoscopic densities. For phase segregation 
of binary alloys in the absence of external fields, the former method relies 
on the Ising lattice gas with Kawasaki spin-exchange dynamics (e.g., 
refs. 7-9), while the latter exploits the Cahn-Hilliard (CH) ~~ equation 
without noise (e.g., refs. 11 and 12). Another, less common approach uses 
cell dynamical systems (CDS) introduced in refs. 13-15, which can be con- 
sidered as a mesoscopic description of the phenomena. Since all these 
techniques are phenomenological descriptions attempting to capture the 
essence of phase segregation in real alloys, none is a priori better than the 
other. It is therefore gratifying (and still somewhat surprising) that, while 
a given technique might turn out to be more efficient in a given situation, 
they all give very similar results. This suggests (e.g., ref. 15) that there is an 
underlying renormalization-group structure and a single universality class 
behind the phenomena of ordinary phase segregation. 
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For phase segregation in the presence of an external field, much less 
is known. While gravity is unavoidable on earth-bound experiments, its 
effects are either too small in the systems of interest or kept small by 
choosing materials of comparable densities. On the theoretical front, this 
problem was studied by Kitaharea e t  al. tl6) who showed that we cannot 
just add the field term to the free energy of the usual CH equation. One 
needs a modification corresponding to a nonconstant mobility (~7'~s) to 
get any effect at all, They also carried out some simulations using CDS. 
Later, more quantitative studies (1" ~9,20)used modifications of CH (mCH) 
whose range of validity remains to be studied. Surprisingly, no one has 
investigated phase separation dynamics of the lattice gas directly. The aim 
of this paper is to report on simulation studies of the latter and compare 
them to both old and new studies of mCH. Though similarities are found 
for the two-point correlations, dramatic differences are discovered for the 
three-point function, which is a quantitative measure of the particle-hole 
asymmetry in the driven system. 

In the remainder of the paper, we present the microscopic model in 
Section 2 and the InCH in Section 3. Our findings and comparisons are 
given in detail in Section 4. Possible reasons for the major discrepancies are 
discussed in the final section. In a subsequent paper 12~1 we will focus on the 
time evolution of certain shapes of droplets in a further effort to probe the 
differences between the microscopic and macroscopic approaches. 

2. T H E  M I C R O S C O P I C  M O D E L  

We consider a two-dimensional square lattice with N = L,.L;, sites and 
periodic boundary conditions in both directions. Each site is labeled by an 
index i = 1 ..... N and is either occupied by a type A particle (r/i = 1 ) or by 
a type B particle (r/i = 0). For simplicity we shall refer to A's as particles 
and to B's as holes. Given a configuration r/= (r/l .... , r/N) with an overall 
particle density 

p = N  r/, (1) 
i = l  

the system evolves under a particle-conserving stochastic dynamics. The 
particles are endowed with nearest neighbor attraction, modeled in the 
usual way through a Hamiltonian 

H(I1) = - 4 J  ~. r/,r/j (2) 
( i , j )  
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with J > 0. Furthermore, the particles are biased to move in the direction of 
an external field E. The entire system is coupled to a thermal bath at a given 
temperature T. To satisfy local detailed balance, we chose a Metropolis 
algorithm in which the exchange between two randomly chosen nearest 
neighbor sites a and b occurs with a probability 

W(a, b)= Min[ I, exp{ - H ( q  a'b) -- H(q) J/ksT + E(xb-- xa)(qb--rl,,) } ] (3) 

where rl "" b is the configuration after the exchange. Note that the external 
field E is taken to be in the positive x direction here, so that the particles 
jump preferably to the right/5) At half-filling (p=0 .5)  and E = 0 ,  this 
system is known to undergo a second-order phase transition at the 
Onsager critical temperature Tc = (2.2692...)J/kB. For E :/: 0, this transition 
remains second order and occurs at a higher temperature, saturating at 
about~ZZ. 231 1.41 Tc for infinite E. Other theoretical and simulational results 
on this model are reviewed extensively in ref. 6. 

To study phase segregation displayed by this model we used the 
infinite-temperature homogeneous phase as an initial condition: a con- 
figuration consisting of pN particles and ( 1 - p ) N  holes randomly dis- 
tributed on the lattice. A rapid quench is then simulated by allowing the 
configuration to evolve according to the rates given in Eq. (3) with T <  To. 
Unless otherwise specified, the parameters we chose are Lx = 512, Ly = 256, 
p = 0.5 (half filling), and T =  0.6To, with E ranging from 0.3 to 1.0. The 
results will be presented in Section 4 and compared to those from numeri- 
cal integration of macroscopic evolution equations, a brief summary of 
which is given next. 

3. THE M A C R O S C O P I C  M O D E L S  

In this approach, the discrete variables of the microscopic model are 
replaced by coarse-grained continuous ones. Thus, instead of occupation 
numbers at discrete sites, one introduces a density field which serves as the 
conserved order parameter, be it the density of particles in the model 
described above or the difference of concentrations of A and B atoms in 
binary alloys. Of course, the overall average density is a constant, so that 
the system is often described in terms of ~b(r, t), the deviation of the density 
from this average at the space-time point (r, t). 

Before we discuss the various equations proposed for the driven 
system, let us briefly summarize the case without an external field. The 
equation of motion for ~b(r, t) takes the general form c~~ 

o t = V  �9 d/V -~- (4) 
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where ~{~b} is the coarse-grained free energy and ~ is the mobility, which 
is generally a function of ~b. Equation (4) can be obtained from the con- 
tinuity equation 

- - =  - V . J  (5) 
Ot 

under the assumption that the current J obeys Fick's law 

J =  - J g V p  (6) 

with p being the local chemical potential 

6 ~  
/t(r, t )=  (7) 

6r t) 

For ~ one generally takes the Ginzburg-Landau free energy functional 

(8) 

where g, ~, and r are phenomenological parameters. Note that we have 
chosen to write the ~b 2 term with a negative sign, so that uniform and small 
~b's are unstable for positive r. This choice models the instability of the 
homogeneous phase when T is below the critical T,. (conversely, r should 
be negative if T >  To). A further simplifying assumption is to take J /  to 
be a constant. With a suitable rescaling of ~b, r, and t depending on the 
temperature, Eq. (4) can then be rewritten in the dimensionless form 

tg~(r, t) -V2[~b(r, t ) -~(r ,  t)3+ V2~b(r, t)] (9) 
Ot 

This is the Cahn-Hilliard (CH) equation. I~~ With or without the addition 
of noise it provides the framework for many studies of phase segregation. 
An initial ~b(r, b) is chosen, typically from a Gaussian distribution with zero 
mean, small variance, and delta-function correlations. Then, ~b(r, t) is 
obtained by integrating this equation numerically via some appropriate 
discretization (see, e.g., refs. 11 and 12). As pointed out in the Introduction, 
the results so obtained are in remarkably good quantitative agreement with 
regard to gross features with both experiments on physical systems and 
Monte Carlo simulations of lattice gases. 
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We next consider modifications of this equation to take into account 
the presence of an external field. A variety of models have been proposed 
recently. The most naive approach, modifying only the free energy, Eq. (8), 
by 

=~OL -- f darE'b( r, t ) x  (10) 

and keeping ./# independent of ~, leads, as pointed out in ref. 16, to 
precisely the same CH equation (9). On the other hand, this additional 
term will survive if we restore the ~(r, t) dependence to the mobility J//. 
A natural choice 1161 is to suppose, as suggested by Langer et al. ~71 (see also 
ref. 18) in the context of undriven systems, that J/r = 1 _~q~2, where 
is a function of temperature with 0c~ 2 --+ 1 from below as the temperature 
goes to zero and I~1 is the average value of ~ in the segregated phase, 
equal to one in our units. This leads to 

v(1 [ v :j (11) 

A modified form of Eq. (11), with ~b replaced by the magnetization m with 
Iml ~< 1, ~OL replaced by a nonlocal functional of m, and 0~ = 1, can in fact 
be derived rigorously, by suitable scaling of space-time, for lattice models 
with long-range interactions and Kawasaki exchanges, t-'4) Expanding 
Eq. (11) and using the form of ~ given in (10) above, it can be recast in 
the dimensionless form 

o~ 
o t = v  �9 [(1 -oqb 2) v(-~b +~b 3 - V2~)] + E .  V~b 2 (12) 

by appropriate rescaling of ~b, t, and E. When 0~q~ 2 is typically small, the ~b 
dependence of Jg. in the first term on the right side of the equation is 
presumably unimportant, and it simplifies to 

o~ 
o t  = -V{~b -~b 3 + V2~b} + E .  V~b 2 (13) 

Equation (13) is the simplest modification to the CH equation, and is 
directly related to the macroscopic models successful in describing the 
steady-state properties of our driven systems. (6) Detailed numerical work 
on the solution of (13) has been performed previously. (~) 
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We note, however, that in the regime we are considering oc~ 2 will typi- 
cally be close to 1, so its neglect in the term not involving E is not a priori 
justified. [This leaves open the question of why the neglect of this term in 
Eq. (9) does not seem to have any pronounced effect on the decomposition 
in this temperature regime. ] The fact that (1 - ~ 2 )  can become negative is 
also problematic since it may lead to unwanted behavior for the term in the 
CH equation not involving E. We have therefore investigated a modifica- 
tion of Eq. (11) where (1-oc~b 2) is replaced by [I- tanh(2~b2)] ,  which is 
more in the spirit of the exact equation described after Eq. (11). t24) This 
corresponds to replacing Eq. (12) by 

0 t = V  �9 [(1 -tanh(2~b 2) V(-~b +~b3- V2~b)] +E-Vtanh(2~b 2) (14) 

We picked 2 = 2 [the mobility in the bulk where [~b[ ~ 1 is greatly reduced 
in this case since 1 - t a n h ( 2 ) = 0 . 0 3 6 ]  and found, somewhat to our sur- 
prise, that this new equation gives results which are quite similar, except 
for time scales, to that obtained from Eq. (13). Some qualitative results on 
this equation will be presented below (see Figs. 7 and 8), but we will do 
most of our micro-macro comparisons with solutions of Eq. (13). 

We will leave for a later study detailed comparisons with ref. 13 and 
other mCH equations, "9" 2o) which all appear to be qualitatively similar to 
those in ref. 1. We also hope to make comparisons with CDS studies, 
which may give different results from the mCH in the presence of a field. 

We summarize now the results of refs. 1, 19, and 20 and the present 
work: except at the earliest stages, the growth is highly anisotropic, so that 
it is necessary to introduce at least two length scales, Ril(t) and R• 
associated with the directions parallel and transverse to the field, respec- 
tively. The anisotropy has the following main features: 

�9 An almost-linear growth of the clusters with time in the direction of 
the field, i.e., Rll(t)~t~" with ~pll ~0.8-0.9 in ref. 1 and ~Pll~ 1 in refs. 19 
and 20 and the present work. 

�9 A much reduced, and difficult to measure, growth in the direction 
perpendicular to the field, i.e., R• ~ t ~ ,  with qLL ~ 1/4 in ref. 1, ~P_L < 1/3 
in ref. 19, and ~p• 1/5 in the present work. No value was reported in 
ref. 20. 

�9 Poor dynamical scaling; the two-point correlation functions G(r, t) 
do not collapse to a single curve when the lengths parallel and transverse 
to the field are rescaled by Rfl(t) and R• especially at large distances. 
This is observed by all authors. 

822/82/3-4-34 
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�9 Numerical solutions of Eq. (13) show the formation of triangular 
domains, with the particle-rich clusters pointing along the field, i.e., 
"downstream". t ~) Numerical solutions of Eq. (14) done in the present work 
also show triangles pointing "downstream" (see Fig. 8). In contrast, the 
microscopic model studied here leads to triangular clusters pointing 
"upstream" instead. 

4. RESULTS OF S IMULATIONS 

Most of the Monte Carlo studies of the microscopic model described 
in Section 2 used essentially infinite E, 16~ since the effects of the drive on the 
steady states were the main focus. In particular, the only previous com- 
ments on time evolution t25~ were based on observations made with "infinite 
E" at the very late stages where the clusters take the form of long, narrow 
stripes parallel to the field. Since the length of those stripes is essentially the 
same as the size of the system, the information on cluster growth (in the 
field direction) and asymmetry (with respect to reflection) was lost. On 
the other hand, in the studies of the macroscopic model, Yeung et al. I~) 
argued that they were in the regime "small E"  and early times. In this 
regime they found highly anisotropic, as well as asymmetric, behavior. Our 
present study will focus on the relatively early stages of the phase separa- 
tion. In this regime we found that there are significant differences between 
small and large values of E, with the crossover being E ~  8J/kBT. We shall 
therefore use small drives, with E typically much smaller than 8J/kBT. The 
main conclusions are: (i) the anisotropic growth laws obtained from the 
two-point correlation functions are consistent with those in refs. 1 and 19, 
but (ii) the asymmetry of the clusters is opposite, i.e., triangular domains 
tend to point "upstream." As time evolves, the triangles become more and 
more elongated, so that they span the system and create the stripes 
described above. At the very late stages, the stripes will merge into a single 
band, filling a fraction p of the volume. 

4.1. Power -Law Growth  of Clusters 

To study the growth of the clusters with time, we need an estimate of 
their typical size in a given configuration. To do this we can use informa- 
tion contained in the two-point correlation function G(r, t) or its Fourier 
transform, the structure factor S(k, t). Defining the latter by 

1 p]2 
S ( k , t ) = ~  ~ e - i k ' ~ [ r / ( r , t ) - -  (15) 
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we find for the former 

G(r, t ) =  1 ~ exp( ik ,  r )S(r ,  t) (16) 

When E - - 0 ,  G(r, t) is isotropic for distances large compared to the lattice 
spacing and a convenient  choice for a characteristic length R(t)  is the value 

Fig. 1. 
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of r where G(r, t), the spherical average of G(r, t), becomes negative for the 
first time, i.e., G(R(t), t )=0.  (26) 

In the presence of an external field E it is natural to introduce the two 
lengths Ri~(t) and R• via G(Rx(t), y = 0; t ) =  0 and G(x = 0, R:,(t); t ) =  0 
[We have chosen E to point in the positive x direction, ( x , y ) - ( l l ,  _L)]. 
The time dependence of these functions, assumed to be closely related to 
the actual sizes of the domains, will serve as quantitative measures of 
cluster growth in these particular directions. 

We determined R,- and Ry by using a polynomial of second order to 
fit the few points of G in the neighborhood of zero and averaged over the 
results obtained from tend different initial random configurations. Figure 1 
shows their behavior in a system of size 512x256 (with p =0 .5  and 
E =  0.5). Figure la strongly suggests that the clusters grow linearly with 
time along the field, i.e., 

R x ~ t  ~'~ with ~[ l~  1 (17) 

The transversal growth is much slower: a log-log plot of (t) vs. t in 
Fig. ( lb) suggests a power law-behavior of the type 

Ry~  t ~l with ~ •  1/5 (18) 

over the time scale used here. The value of ~o• ~ 1/5 should not be taken 
too seriously, since the range covered is small and later times could well be 
characterized by a different exponent (in fact it was argued in ref. 1 that 
~0• should eventually become 1/3). Nevertheless, this value is consistent 
with those obtained by numerical integration of the various macroscopic 
equations.(L ~9) 

4.2. Dynamical Scaling 

When the system is governed by only one length scale, say R(t), vary- 
ing with time like R(t) ~ t ~, then it is reasonable to assume that any func- 
tion of position and time F(r, t), where F is calculated by averaging over 
the whole system, may be expressed as F(r, t )oc f~ ( r /R( t ) ) .  In other 
words, apart from a possible overall amplitude, plots of F vs. the scaled 
variable r/R(t) for various t's will collapse onto one curve: f. Such a system 
is said to display dynamical scaling. In the case of phase segregation 
without an external field, the radial two-point correlation function G(r, t) 
collapses once r is rescaled by R(t) as defined after Eq. (16). Likewise the 
structure factor scales according to S(k, t)~k3,F(k/k,,,(t)), ~27'28) where k,,, 
is the value of k at which S is maximum at time t. 
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In the highly anisotropic, E :/: 0, case, the simplest assumption is that 
the system is governed by the two lengths Ril(t) and R• defined in 
Section 4.1. If dynamical scaling is satisfied, then we could expect the 
correlation functions to collapse, once the appropriate rescaling are per- 
formed. Using the same data which gave us Fig. 1 for R.,., R;,, we plot 
G(x/R,.(t), 0)/G(0, 0) and G(O, ),/Ry(t))/G(O, 0) in Fig. 2. The collapse of 
the functions is quite good near the origin, but this is motly due to the fact 
that two points (the origin and the position of the first zero of G) are 
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defined to be exactly equal. Beyond the first crossing, the overlap becomes 
poorer, especially in the direction transverse to the field. Though the lack 
of collapse appears to remain within reasonable bounds, there is a 
systematic shift in the data in the sense that the amplitude of oscillation of 
the rescaled functions is always lower (in x) or higher (in y) for later times. 
These plots cast serious doubts on the validity of the simple dynamical 
scaling picture. Alternatively, they suggest that the true scaling regime was 
not attained in the time scale of our simulations. In Figs. 3-5 we show the 
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E =  0.3, 0.5, and 1.0 in order to show that the overlap also seems to be 
worse for larger E. Note  again the systematic shift with time. These 
results are consistent with those obtained through the macroscopic 
approach, (]'~9'2~ where a lack of clear dynamical scaling was also 
observed. 
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4.3. Reflection Asymmetry in Typical Cluster Shapes 

A natural conclusion from the above analyses is that, as in the 
undriven case, both the microscopic and the macroscopic models appear 
to describe the same phenomena, though from a different perspective. 
However, even a casual glance at the actual configurations reveals an alar- 
ming discrepancy. At the times considered here, there is a tendency for our 
clusters (of particles) to take a triangular shape pointing against the field 
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(Fig. 6), i.e., "upst ream."  By contrast ,  in the macroscopic  model  ~1 they 
tend to be afigned along the field (Fig. 7), i.e., "downst ream."  The lat ter  
figure was obta ined  using the same technique and parameters  as in ref. 1 
(except for the lat t ice size), i.e., an Euler discret izat ion scheme with mesh 
size 8x = 1.7, t ime step fit = 0.25, and external  field E =  0.4, on a square lat- 
tice with per iodic  b o u n d a r y  condit ions.  The initial condi t ions  consisted of  
a locally r a n d o m  ~b(r), d is t r ibuted according to a Gauss ian  with a variance 
of 0.02 and an average of  - 0 . 4  (equivalent  to p =0 .3 )  or  0 (equivalent  to 
p=0.5). 

Fig. 6. Typical configurations after a quench from a disordered state obtained from Monte 
Carlo simulations at t=  1000, 5000, 10,000 MCS (top to bottom) with E=0.5, T=0.6 T,., 
and p = 0.5. Shown are 256 x 128 sections of the full 1024 x 512 lattice. The field points to the 
right, and particle clusters are in black. 
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Fig. 7. Typical configurations obtained by solving the modified Cahn-Hilliard equation (13) 
on a 128 x 128 square lattice with periodic boundary conditions. The same parameters as 
Yeung e t  a l .  were used (E = 0.4, dx = 1.7, and d t  = 0.25 ). The times shown are 500, 1000, and 
5000 (top to bottom) in dimensionless units. The left column corresponds to an average 
concentration ~av= - 0 . 4  (equivalent to p =0.3) and the right column to ~av = 0 (equivalent 
to p = 0.5). The field points to the right, and dark regions correspond to particle clusters. 

To investigate this difference quantitatively, we introduce an asym- 
metry factor, via a particular three-point correlation function 129J which 
should be sensitive to triangular domains. For the latter, we consider 

G3(x, y; t) = ~ ~ ~l(x', y') rl(X' + x, y' + y) rl(x' + x, y ' -  y ) 
A J )d 

(19) 
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Fig. 8. Comparison between solutions of Eq. (13) (left column) with Eq. (14) (right column). 
For Eq. (13) the term E. Vq~ 2 was replaced by E. V tanh(2~b2). The same random initial con- 
figuration with ~av=-0.4 was used in both cases. The parameters 2=2, dx=l.5, and 
dr=0.05 were chosen. Times shown are 500, 1000, and 5000 (top to bottom). Note the 
apparent acceleration of the coarsening for Eq. (14). 

which  measures  the cor re la t ion  of  three part icles at the vertices of an  
isosceles t r iangle  with base 2y and  a l t i tude  x. Next,  we define the asym- 

met ry  factor by 

A(x,  y; t) - G3(x' y; t) - G3( - x ,  y; t) (20) 
G3(x, y; t) + G~( - x ,  y; t) 

With  this defini t ion,  A(x,  y ) > 0 ( < 0 )  when  a conf igura t ion  consists  of  a 
single t r i angu la r  (say, isosceles) cluster  po in t i ng  in the negat ive  (posit ive) 
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x direction. Clearly, A(x, y )=0  if the particles are distributed symmetri- 
cally relative to reflection about a vertical axis. (Remember that the system 
is translation invariant in the periodic box.) Such is the case when the 
particles are placed randomly on the lattice or if they cluster into, say, 
a long rectangular stripe. Hence we expect the function A to serve as a 
good measure for distinguishing "upstream" triangular patterns from 
"downstream" ones. 

Though A(x,y; t) is a well-defined quantity free of any empirical 
biases, we found that its magnitude is quite small for typical configurations. 
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Fig. 9. Evolution of  A(x', t) and A(t) in Monte Carlo simulations with E =  0.3. 
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Part of  the reason is that typical configurations consist of  many clusters, leading 
to cancellation effects, especially for large values of  x and y. Thus, it would be 
helpful to consider other quantities which maximize the chances of  having all 
three points in one cluster. This can be achieved by restricting our attention to 
distances within R.,.(t) and R.,,(t). Further, since we expect A to be symmetric 
in y, summing over y is reasonable. So, let us define two simpler measures of  
asymmetry 

R y ( t )  

A(x; t)= ~ A(x,y; t) (21) 
y = l  
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and 

2 R s ( t )  

A(t)= ~ A(x; t) (22) 
A ' ~ I  

In the former, the upper bound Ry(t)[as defined after Eq. (16)] was 
empirically discovered to yield the largest amplitude of A(x; t) for a given 
time t. Figures 9-11 show the results for the microscopic model with one 
run with E=0.3,  0.5, 1.0, respectively. Though more runs would certainly 
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be desirable, we can make some tentative conclusions based on these 
figures, since all functions exhibit the same general feature of rising to a 
maximum before dropping through zero at a larger x. It is easy to interpret 
such behavior: the presence of triangular patterns pointing "upstream." 
Further, we may define an "average size" by the peak position, which is 
roughly the same as R,.(t). In most cases A(x; t) first vanishes at a position 
close to 2R,.(t), a fact related undoubtedly to the peak positions. This is the 
motivation for the cutoff in the definition of A(t). In Fig. 12 these are 
shown, corresponding to the three values of E above. Note that in the 
E--  1.0 case, this asymmetry factor reaches a maximum around 3000 MCS 
before falling to near zero. We may interpret this behavior as the growth 
of triangular patterns and their subsequent decay as the clusters begin to 
elongate into long, narrow stripes with little asymmetry. For the cases with 
smaller E, it appears that this narrow stripe regime has not been reached. 
This behavior is also quite reasonable, since we may expect slower rates of 
cluster "stretching" from smaller drives. We also observed that, at earlier 
times, this asymmetry factor grows faster for larger values of E. Our 
intuitive picture, gleaned from inspecting the time evolution of actual con- 
figurations, is that driven particles "pile up" behind a cluster, much like 
traffic on a multilane highway behind a blockage. Since particles can move 
around the obstacles, they form roughly triangular patterns against the 
flow. In this scenario, it is reasonable to expect the triangles to grow faster 
if the drive is stronger. Details aside, the A's are positive in all cases, a clear 
indication of triangles pointing "upstream." 
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Next, we perform the same analysis on the data from the macroscopic 
model (see, e.g., Fig. 7). To compute the G3 here, we replaced, at each dis- 
cretized (x, y) point, positive (negative) values of ~b(x, y; t) by + 1 (0). The 
results for A(x; t) and A(t) are shown in Fig. 13. Unambiguously, both are 
negative, displaying similar features of rise and fall. These quantities provide a 
quantitative measure of the tendency of these clusters to point "downstream," 
in sharp contrast to the results of the microscopic model. In the remainder of 
this paper, we venture possible explanations of this major discrepancy. 
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5. CONCLUSIONS 

Systems with a single conserved order parameter evolving toward 
thermal equilibrium following a rapid quench are quite successfully 
modeled by both Monte Carlo simulations of a microscopic lattice gas and 
numerical integration of the macroscopic Cahn-HiUiard equation. If the 
same system is subjected to an external drive, so that it evolves toward a 
nonequilibrium steady state, then there appear to be some similarities, as 
well as serious discrepancies, between the microscopic and the macroscopic 
descriptions. 

We have performed simulations with a microscopic model c5~ and repeated 
the studies of Yeung et al. ~ on a modified Cahn-Hilliard equation which is 
supposedly its macroscopic counterpart. Measuring the two-point correlation 
function and using standard definitions for "the average domain size," we find 
that these approaches lead to similar results. These are: (i) linear growth of 
clusters, with time, along the field direction, (ii) power-law growth (t ~ • o.05) 
in the transverse direction, and (iii) lack of simple dynamical scaling. There is 
insufficient data on either model to make a quantitative comparison of these 
powers, so that it is premature to draw conclusions about the presence of a 
universality class. The lack of scaling suggests serious difficulties to obtaining 
a clear picture, such as in the undriven case, of the phenomenon of phase 
segregation in the presence of a drive. 

Any hope that the micro- and macroscopic models belong to the same 
universality class is further dimmed by the observation that typical con- 
figurations of the two contain readily discernible triangular patterns which 
point in opposite directions. We introduced a three-point correlation 
function which is particularly sensitive to the presence of triangular 
clusters. From this, we constructed several asymmetry factors. The sign of 
any of these indicates the direction in which the triangles tend to point. 
In the regimes we have probed, these factors display similar behavior, 
but are opposite in sign (see Figs. 9-13)! Two alternative macroscopic 
approaches 1~9"2~ remain to be explored in detail. However, it is unlikely 
that they will give very different results, since they are closely related to 
Eqs. (13) and (12), where the nonconstant mobility stays coupled to the 
chemical potential term. Preliminary data on Eq. (14) show triangular 
clusters pointing "downstream" (see Fig. 8), albeit with a different time 
scale. The role of the mobility will also be explored in more detail in 
ref. 21, as well as the possible use of CDS to address this issue. 

To reconcile these differences at the analytical level appears difficult at 
present. Unfortunately, we are also unable to resolve the discrepancy at the 
intuitive level. Above, we gave plausible arguments for "upstream"-pointing 
triangles; such patterns are common experience for drivers approaching toll 

822/82/3-4-35 
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plazas on a highway. Whether the mechanism for the formation of such 
patterns is just the Mullins-Sekerka instability, t3~ as observed in a similar 
system by Guo and Jasnow, (31) remains to be clarified. On the other hand, 
Yeung et al. gave convincing arguments for "downstream"-pointing tri- 
angles in terms of enhanced surface currents, c~l withing the context of a 
driven, continuous density field. In an attempt to confront these intuitive 
ideas, we studied the evolution of a single solid cluster of various shapes in 
an otherwise empty background. The results c211 further confirm the sharp 
contrast, namely, "upstream" growth is essentially absent in the macro- 
scopic model. 

Of course, there are many possibilities which may account for the dis- 
crepancies. We venture just two. The most glaring differences between the 
two approaches is the presence of noise during the evolution. In the macro- 
scopic approach, the only randomness is in the initial configuration. The 
usual argument, ~t~" ~2) based on the assumption of a constant mobility for 
using the deterministic CH rather than the noisy CH-Cook (32) equation, is 
that thermal fluctuations should play a minor role if the system is 
quenched to very low temperatures. There, the probability of the system 
evolving to configurations of higher (lower) energy is essentially 0 (1). 
Furthermore, it was shown in refs. 33 and 11 that the addition of noise to 
Eq. (9) has little effect on the results once the asymptotic regime is reached. 
However, for our driven lattice gas, there are weaknesses in using such an 
argument. First, due to the presence of the external field, there is no global 
Hamiltonian, so that there is no clear concept of energy. The difference 
with the E = 0  case would be even sharper if we had used, say 4 <  
(EkaT/J) < 8, for which a two-particle cluster will be torn apart. Second, 
with our choice of E, the transition rates proportional to e -E  are far from 
vanishingly small. Indeed the noise becomes important if one considers 
Eq. (12) (with E = 0  and 0c close to 1). In this case the cluster growth 
behaves like l 1/4 if noise is absent, while the t 1/3 growth is restored only if 
it is added. (36) Therefore, we plan to include noise in a future study of the 
macroscopic approach. Another possible shortcoming of Eq. (13) lies in the 
lack of anisotropy in the diffusive terms. Without anisotropy, many of the 
interesting properties exhibited in the microscopic model in the homo- 
geneous, high-temperature phase could not be accounted for (see, e.g., 
ref. 34). Moreover, the proper description of critical behavior relies cru- 
cially on having only the transverse "diffusion constant" or equivalently the 
V ~  term vanish. From this point of view, it may be argued that an 
extreme form of anisotropic equation such as 

0r = + + . . .  (23) 
Ot 
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would be more appropriate for T < T c. We have made several attempts at 
introducing anisotropy. So far, no clear conclusions can be drawn, except 
in the following case. Integrating Eq. (23) with extreme a.nisotropy, we find 
no discernible triangular patterns before the formation of narrow stripes. 
Similar behavior is also observed in Monte Carlo simulations of the lattice 
model provided E > 8J/kBT. However, more definite statements must await 
quarititative measurements of growth laws and asymmetry factors. 
Investigations along these lines are in progress. 

Our work may be placed in the general context of the following 
questions: Given a system with a well-defined microscopic dynamics (or 
Hamiltonian), is there a systematic way to derive or postulate a macro- 
scopic description which captures the essence of the microscopic system 
and predicts correctly the slowly varying, large-scale properties? Recently, 
there have been some advances to answering this question for our driven 
lattice gas in the high-temperature limit. ~35~ Similarly, an anisotropic 
version of Eq. (13), with positive or some vanishing V~_~ terms, proved 
quite successful if T is above or near criticality, t61 In particular, this 
approach seems to be reasonable good for predicting the three-point 
correlation for T >  To. t29~ Therefore, it is the more puzzling that Eq. (13) 
fails to provide even the correct sign of the asymmetry factor here. Clearly, 
much work remains to be done before we can claim to have a sound under- 
standing of the microscopic-macroscopic connection. Finally, it would be 
most desirable to have experimental data from physical systems which 
could serve to resolve the conflicts presented here. 
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